STATHMIN

Stathmin 1/oncoprotein 18, also known as STMN1, is a highly conserved 17 kDa protein. Its function as an important regulatory protein of microtubule dynamics has been well characterized. Eukaryotic microtubules are one of three major components of the cell’s cytoskeleton. They are highly dynamic structures that continuously alternate between assembly and disassembly. Stathmin performs an important function in regulating rapid microtubule remodeling of the cytoskeleton in response to the cell’s needs. Microtubules are cylindrical polymers of α,β-tubulin. Their assembly is in part determined by the concentration of free tubulin in the cytoplasm.

At low concentrations of free tubulin, the growth rate at the microtubule ends is slowed and results in an increased rate of depolymerization (disassembly).

Stathmin interacts with two molecules of dimeric α,β-tubulin to form a tight ternary complex called the T2S complex. One mole of stathmin binds to two moles of tubulin dimers through the stathmin-like domain (SLD). When stathmin sequesters tubulin into the T2S complex, tubulin becomes non-polymerizable. Without tubulin polymerization, there is no microtubule assembly. Stathmin also promotes microtubule disassembly by acting directly on the microtubule ends.

The rate of microtubule assembly is an important aspect of cell growth therefore associating regulation of stathmin with cell cycle progress. Regulation of stathmin is cell cycle dependent and controlled by the cell’s protein kinases in response to specific cell signals.